Part Number Hot Search : 
2SB0930 1N3957 BU810 MBT555 I6435DQ CO3072 M41T56 C5750
Product Description
Full Text Search
 

To Download ADL5350 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Preliminary Technical Data
FEATURES
Broadband RF, IF, and LO ports Conversion loss: 6 dB Noise figure: 6 dB High input IP3: 26 dBm High input P1dB: 17 dBm Low LO drive level Single-ended design: no need for baluns Single-supply operation: 3 V @ 10 mA Miniature 8-lead 3 mm x 2 mm LFCSP package RoHS compliant
LF to 4 GHz High Linearity Y-Mixer ADL5350
FUNCTIONAL BLOCK DIAGRAM
GND RF INPUT OR OUTPUT RF GC 3V VPOS GND IF OUTPUT OR INPUT IF
ADL5350
LO LO INPUT
05615-001
APPLICATIONS
Cellular base station Point-to-point radio links RF instrumentation
Figure 1.
GENERAL DESCRIPTION
The ADL5350 is a high linearity, up-and-down converting mixer capable of operating over a broad input frequency range. It is well suited for demanding cellular base-station mixer designs that require high sensitivity and efficient blocker immunity. Based on a GaAs pHEMT single-ended mixer architecture, the ADL5350 provides excellent input linearity and low noise figure without the need for a high power level, local oscillator (LO) drive. In 850 MHz/900 MHz receive applications, the ADL5350 provides a typical conversion loss of only 6 dB. The integrated LO amplifier allows a low LO drive level, typically only 4 dBm for most applications. The input IP3 is typically greater than 25 dBm, with an input compression point of 17 dBm. The high input linearity of the ADL5350 makes the device an excellent mixer for communications systems that require high blocker immunity, such as GSM 850/900 and 800 MHz CDMA2000. At 2 GHz, a slightly greater supply current is required to obtain similar performance. For low frequency applications, the ADL5350 provides access to the gate contact of the output-mixing device. This allows an external LO coupling capacitor to be applied between the VPOS pin and GC pin, helping to improve the LO drive to the switching device. Using a single 100 pF capacitor allows high performance at the lower LO frequencies. The single-ended broadband RF/IF port allows the device to be customized for a desired band of operation using simple external filter networks. The LO to RF isolation is based on the LO rejection of the RF port filter network. Greater isolation may be achieved using higher order filter networks as described in the Applications section of this data sheet. The ADL5350 is fabricated on a GaAs pHEMT high performance IC process. The ADL5350 is available in a 3 mm x 2 mm 8-lead LFCSP package. It operates over a -40C to +85C temperature range. An evaluation board is also available.
Rev. PrC
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c) 2005 Analog Devices, Inc. All rights reserved.
ADL5350 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Specifications..................................................................................... 3 820 MHz Receive Performance .................................................. 3 1950 MHz Receive Performance ................................................ 3 Spur Tables......................................................................................... 4 450 MHz Spur Table..................................................................... 4 820 MHz Spur Table..................................................................... 4 1950 MHz Spur Table................................................................... 5 Absolute Maximum Ratings............................................................ 6 ESD Caution.................................................................................. 6 Pin Configuration and Function Descriptions............................. 7
Preliminary Technical Data
Typical Performance Characteristics ..............................................8 820 MHz Characteristics..............................................................8 1950 MHz Characteristics......................................................... 13 Functional Description.................................................................. 18 Circuit Description .................................................................... 18 Implementation Procedure ....................................................... 18 Applications..................................................................................... 20 Low Frequency Applications .................................................... 20 70 MHz Receive Performance .................................................. 21 High Frequency Applications ................................................... 22 Evaluation Board ............................................................................ 23 Outline Dimensions ....................................................................... 24 Ordering Guide .......................................................................... 24
Rev. PrC | Page 2 of 24
Preliminary Technical Data SPECIFICATIONS
820 MHz RECEIVE PERFORMANCE
VS = 3 V, TA = 25C, LO power = 4 dBm, re: 50 , unless otherwise noted. Table 1.
Parameter RF Frequency Range LO Frequency Range IF Frequency Range Conversion Loss SSB Noise Figure Input Third-Order Intercept Input 1 dB Compression Point LO to IF Leakage LO to RF Leakage RF to IF Leakage IF/2 Spurious Supply Voltage Supply Current Min 750 500 30 Typ 850 780 70 6.3 5.6 27.6 17.8 -28 -16 -17 -50 3 10 Max 975 945 250 Unit MHz MHz MHz dB dB dBm dBm dBc dBc dBc dBc V mA Conditions Low Side LO
ADL5350
fRF = 820 MHz, fLO = 750 MHz, fIF = 70 MHz fRF = 820 MHz, fLO = 750 MHz, fIF = 70 MHz fRF1 = 819 MHz, fRF2 = 821 MHz, fLO = 750 MHz fIF = 70 MHz, each RF tone 0 dBm fRF = 820 MHz, fLO = 750 MHz, fIF = 70 MHz LO Power = 4 dBm, fRF = 820 MHz, fLO = 750 MHz LO Power = 4 dBm, fRF = 820 MHz, fLO = 750 MHz RF Power = 0 dBm, fRF = 820 MHz, fLO = 750 MHz RF Power = 0 dBm, fRF = 820 MHz, fLO = 750 MHz LO Power = 4 dBm
2.7
5.5
1950 MHz RECEIVE PERFORMANCE
VS = 3 V, TA = 25C, LO power = 6 dBm, re: 50 , unless otherwise noted. Table 2.
Parameter RF Frequency Range LO Frequency Range IF Frequency Range Conversion Loss SSB Noise Figure Input Third-Order Intercept Input 1 dB Compression Point LO to IF Leakage LO to RF Leakage RF to IF Leakage IF/2 Spurious Supply Voltage Supply Current Min 1800 1420 50 Typ 1950 1760 190 7.2 6.8 26.6 16 -12.5 -10.5 -10 -54 3 24 Max 2050 2000 380 Unit MHz MHz MHz dB dB dBm dBm dBc dBc dBc dBc V mA Conditions Low Side LO fRF = 1950 MHz, fLO = 1760 MHz, fIF =190 MHz fRF = 1950 MHz, fLO = 1760 MHz, fIF =190 MHz fRF1 = 1949 MHz, fRF2 = 1951 MHz, fLO = 1760 MHz fIF = 190 MHz, each RF tone 0 dBm fRF = 1950 MHz, fLO = 1760 MHz, fIF =190 MHz LO Power = 6 dBm, fRF = 1950 MHz, fLO = 1760 MHz LO Power = 6 dBm, fRF = 1950 MHz, fLO = 1760 MHz RF Power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz RF Power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz LO Power = 6 dBm
2.7
5.5
PrC | Page 3 of 24
ADL5350 SPUR TABLES
Preliminary Technical Data
All spur tables are N x fRF - M x fLO-mixer spurious products for 0 dBm input power, unless otherwise noted.
450 MHz SPUR TABLE
Table 3.
M 0 0 1 2 3 4 5 6 N 7 8 9 10 11 12 13 14 15 -5.7 -24.9 -47.4 -70.5 -78.4 -82.7 -90.6 -78.9 -77.3 -80.8 -78.9 -77.5 -81.3 -79.9 -82.7 -79.7 1 -16.2 -5.7 -57.5 -75.3 -73.1 -76.6 -79.2 -74.4 -73.6 -78.5 -77.1 -80.4 -81.6 -81.3 -77.6 -82.9 2 -25.5 -30.1 -51.1 -70.2 -82.4 -77.1 -82.2 -77.0 -79.0 -76.7 -77.0 -78.7 -81.3 -77.4 -79.6 -79.6 3 -16.2 -18.8 -60.2 -79.7 -79.3 -89.8 -84.3 -83.2 -80.4 -78.7 -84.0 -86.7 -76.8 -78.7 -76.3 -75.7 4 -23.9 -25.2 -53.8 -69.5 -79.5 -77.6 -81.2 -80.1 -78.6 -84.8 -87.0 -79.1 -81.5 -79.7 -82.3 -78.8 5 -22.3 -24.0 -55.2 -76.6 -77.5 -76.1 -96.3 -86.3 -79.6 -80.4 -81.2 -76.4 -78.5 -76.7 -79.8 -78.6 6 -27.1 -24.3 -52.5 -66.9 -84.5 -79.3 -75.8 -78.9 -83.3 -81.1 -84.4 -85.9 -78.5 -77.7 -79.2 -78.7 7 -24.7 -37.1 -50.8 -74.5 -77.8 -79.3 -80.1 -87.2 -81.0 -76.9 -90.2 -78.7 -89.7 -85.8 -83.5 -79.8 8 -27.1 -26.5 -57.7 -73.0 -82.2 -83.1 -80.7 -76.5 -77.4 -80.7 -75.8 -83.4 -74.4 -77.0 -83.5 -77.7 9 -26.8 -53.1 -51.4 -74.7 -77.6 -81.1 -76.9 -81.5 -70.4 -79.6 -77.5 -85.2 -73.3 -78.9 -91.4 -78.4 10 -38.6 -32.0 -65.0 -75.5 -88.4 -78.4 -82.5 -82.8 -77.0 -76.0 -90.4 -78.6 -77.0 -84.5 -78.9 -78.7 11 -30.2 -44.0 -53.1 -71.4 -82.7 -79.6 -74.4 -83.6 -79.7 -91.3 -82.8 -92.3 -78.5 -75.0 -102.8 -80.6 12 -29.9 -59.3 -63.9 -74.6 -77.9 -80.2 -84.0 -88.7 -90.7 -90.5 -83.0 -80.3 -75.2 -81.0 -75.6 -79.0 13 -27.2 -46.0 -77.5 -75.3 -72.8 -77.9 -88.9 -73.5 -78.0 -91.4 -87.9 -75.7 -75.4 -78.6 -80.2 -80.4 14 -29.2 -52.3 -68.7 -75.6 -77.1 -85.6 -89.6 -78.3 -76.2 -96.8 -81.9 -78.3 -91.3 -75.8 -79.5 -87.0 15 -34.8 -43.3 -75.5 -76.1 -83.6 -79.1 -77.9 -78.4 -77.0 -75.7 -83.1 -75.4 -90.7 -82.0 -87.4 -80.3
820 MHz SPUR TABLE
Table 4.
M 0 0 1 2 3 4 5 6 N 7 8 9 10 11 12 13 14 15
1
1 -14.7 -6.22 -71.6 -76.8 -77.8 -80.8 -78.6 -76.6 -80.6 -78.7 N.M.1 N.M.1 N.M.1 N.M.1 N.M. N.M.
1 1
2 -12.8 -33 -50 -69.8 -85.8 -85.2 -80.6 -83.1 -81.7 -76.3 -78.7 N.M.1 N.M.1 N.M.1 N.M. N.M.
1 1
3 -13.3 -20.3 -64.8 -72.8 -91.3 -81.4 -78.3 -75.8 -79 -78.1 -78.4 -79 N.M.1 N.M.1 N.M. N.M.
1 1
4 -14.2 -21.4 -51.7 -75.5 -80.8 -87.1 -83.2 -82.4 -84.1 -82.6 -80.8 -76.7 -76.4 N.M.1 N.M. N.M.
1 1
5 -30.1 -44.5 -53.7 -79.6 -78.2 -79.5 -70.8 -78.2 -78.4 -78.2 -75.4 -81.5 -78.8 -82 N.M. N.M.
1 1
6 -27.1 -38.5 -60.1 -97.5 -80.9 -84.7 -77.5 -78.7 -79.5 -78.5 -76.6 -79.1 -77 -77.7 -84.2 N.M.
1
7 -20.4 -43.1 -64.3 -72.3 -76.1 -108 -86.8 -80.7 -86.3 -87.7 -86 -78.2 -79.4 -80.8 -78 N.M.
1
8 -20.2 -39 -74.8 -79.5 -80.3 -90.2 -84.9 -83 -79 -82.1 -84 -76.1 -81.8 -79.8 -81.7 -77
9 -22.1 -31.3 -61.5 -84.4 -79.4 -84.5 -81.7 -76.5 -76.1 -76.7 -81.2 -83 -78.6 -76.6 -80.3 -79.5
10 N.M.1 -33.1 -56.8 -77.8 -81.1 -76.4 -76.7 -88.9 -86.7 -94.1 -75.5 -75 -82.8 -79.3 -79.3 -82.2
11 N.M.1 N.M.1 -55.1 -74.9 -79.3 -75.1 -81 -77.7 -79.5 -81.2 -72.5 -77.8 -79.3 -82.1 -77.7 -80.7
12 N.M.1 N.M.1 N.M.1 -74.5 -78.1 -80.9 -79.4 -77.3 -88.8 -87.5 -78.1 -84.1 -76.8 -94.9 -75.8 -75.3
13 N.M.1 N.M.1 N.M.1 N.M. -77.6 -78.8 -78.6 -80.2 -73.9 -80.3 -77.1 -79.1 -75.8 -74.6 -86.9 -76.1
1
14 N.M.1 N.M.1 N.M.1 N.M. N.M.
1 1
15 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 -79.5 -78.1 -77.4 -74.9 -78.5 -84.2 -81.2 -75.9 -77 -78.6
-6.22 -18.8 -44.6 -73.4 -78.2 -82.1 -77.6 -80.2 -83.5 N.M.
1
-83.3 -77.1 -78.9 -79.7 -81.9 -81.8 -79.1 -82.2 -83.3 -77.3 -79.7
N.M.1 N.M.1 N.M.1 N.M.1 N.M. N.M.
1 1
N.M. indicates that a frequency was not measured. N.M. spurs are either less than -100 dBm or correspond to a frequency greater than 5995 MHz.
PrC | Page 4 of 24
Preliminary Technical Data
1950 MHz SPUR TABLE
Table 5.
M 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
ADL5350
1 -2.08 -7.81 -74.9 -78.6 -78 N.M. N.M. N.M. N.M. N.M.
1 1
2 -16.6 -36.2 -54 -78.7 -83.8 -73.9 N.M. N.M. N.M. N.M.
1
3 -31.7 -27.2 -62 -85.4 -86.4 -82.8 -80.1 N.M.1 N.M. N.M. N.M.
1 1 1
4 N.M.1 -41.1 -58.5 -82.1 -84.1 -82.3 -82.1 -79 N.M. N.M. N.M.
1 1 1
5 N.M.1 -28 -78.6 -75.6 -79.2 -87.8 -86.7 -80.6 -79.6 N.M. N.M.
1 1
6 N.M.1 N.M.
1
7 N.M.1 N.M.
1
8 N.M.1 N.M. N.M.
1
9 N.M.1 N.M. N.M. N.M.
1
10 N.M.1 N.M. N.M. N.M. N.M.
1
11 N.M.1 N.M. N.M. N.M. N.M. N.M.
1
12 N.M.1 N.M. N.M. N.M. N.M. N.M.
1
13 N.M.1 N.M. N.M. N.M. N.M. N.M. N.M.
1
14 N.M.1 N.M. N.M. N.M. N.M. N.M. N.M. N.M.
1
15 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 N.M.1 -79.6 -79.5 -76.7 -80.7 -80.4 -78.1
-7.8 -9.6 -54.7 -81.1 N.M. N.M. N.M. N.M. N.M. N.M.
1
-57.2 -79.6 -77.5 -80.1 -83.4 -80 -83.2 -83.7 N.M.
1
N.M.1 -79.4 -77.2 -74.7 -80.7 -76.5 -81.5 -89 N.M.
1
N.M.1
1
N.M.1
1 1
N.M.1
1 1 1
N.M.1
1 1 1 1
N.M.1
1 1 1 1
N.M.1
1 1 1 1
N.M.1
1 1 1 1
-81.9 -79.3 -88.2 -81.4 -81.5 -83.1 -80.9 N.M.1 N.M.1 N.M.1 N.M.
1
1
1
-82.1 -79.5 -81.8 -85.5 -79.7 -76.4 -77.8 N.M.1 N.M.1 N.M.
1
-86.3 -75.2 -80.9 -80.6 -82.7 -81.8 -79.6 N.M.1 N.M.
1
N.M.1
1 1 1
N.M.1
1 1 1
N.M.1
1 1 1
-77.4 -79.3 -81 -79.2 -79.7 -78.7 -74.4 N.M.
1
N.M.1 -79.5 -82.9 -78.8 -88.3 -77.6 -81.6 -78.9 N.M.1
N.M.1
1
N.M.1
1 1
-78.7 -77.9 -73.9 -87.1 -83 -82 -78.7
-80.7 -80.9 -86.6 -82.9 -74.6 -73.1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1 N.M.1 N.M.1 N.M.
1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M.1
N.M. indicates that a frequency was not measured. N.M. spurs are either less than -100 dBm or correspond to a frequency greater than 5995 MHz.
PrC | Page 5 of 24
ADL5350 ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter Supply Voltage, VS RF Input Level LO Input Level Internal Power Dissipation JA Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Rating 6.0 V 20 dBm 20 dBm 324 mW 154.3 C/W 135C -40C to +85C -65C to +150C
Preliminary Technical Data
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
PrC | Page 6 of 24
Preliminary Technical Data PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
RF/IF 1 GND2 2 LOIN 3 GND1 4 8 RF/IF
ADL5350
ADL5350
TOP VIEW (Not to Scale)
7 GC 6 VPOS 5 GND1
05615-002
Figure 2. Pin Configuration
Table 7. Pin Function Descriptions
Pin No. 1, 8 2 3 4, 5 6 7 Mnemonic RF/IF GND2 LOIN GND1 VPOS GC Function RF and IF Input/Output Ports. These nodes are internally tied together. RF and IF port separation is achieved using external tuning networks. Device Common (DC Ground) for RFIF Switching Circuitry. LO Input, AC-Coupled. Device Common (DC Ground) for LO Buffer Circuitry. Positive Supply Voltage for the Drain of the LO Buffer. A series RF choke is needed on the supply line to provide proper ac-loading of the LO buffer amplifier. Gate Contact of Mixing Device. Typically not connected for high frequency mixing. Connecting capacitor between GC and VPOS permits low frequency applications.
PrC | Page 7 of 24
ADL5350 TYPICAL PERFORMANCE CHARACTERISTICS
820 MHz CHARACTERISTICS
Preliminary Technical Data
VPOS = 3 V, RF Frequency = 820 MHz, IF Frequency = 70 MHz, RF Level = -10 dBm, LO Level = 4 dBm, Temperature = 25C, unless otherwise noted.
15 14 13 22 21 20
SUPPLY CURRENT (mA)
11 10 9 8 7
05615-003
INPUT P1dB (dBm)
12
19 18 17 16 15 14 13 12 -40
05615-006
6 5 -40
-20
0
20
40
60
80
-20
0
20
40
60
80
TEMPERATURE (C)
TEMPERATURE (C)
Figure 3. Current vs. Temperature
10 9 8 7 6 5 4
05615-004
Figure 6. Input Compression vs. Temperature
14 -40C +25C 12
CONVERSION LOSS (dB)
SUPPLY CURRENT (mA)
10 +85C 8 6 4 2 0 2.7
2 -40
-20
0
20
40
60
80
3.2
3.7
4.2
4.7
5.2
TEMPERATURE (C)
SUPPLY VOLTAGE (V)
Figure 4. Conversion Loss vs. Temperature
Figure 7. Current vs. VPOS
30 29
7.4 7.2
28
CONVERSION LOSS (dB)
27
7.0 6.8 +85C 6.6 6.4 +25C 6.2 -40C 6.0 2.7 3.2 3.7 4.2 4.7 5.2
INPUT IP3 (dBm)
26 25 24 23 22
05615-005
21 20 -40
-20
0
20
40
60
80
TEMPERATURE (C)
SUPPLY VOLTAGE (V)
Figure 5. IIP3 vs. Temperature
Figure 8. Conversion Loss vs. VPOS
Rev. PrC | Page 8 of 24
05615-008
05615-007
3
Preliminary Technical Data
820 MHz CHARACTERISTICS
29.0 -40C 28.5 +25C 28.0 14 12 -40C 10 8 +25C 6 4 +85C 16
ADL5350
27.5 27.0 +85C 26.5 26.0
SUPPLY CURRENT (mA)
05615-009
INPUT IP3 (dBm)
25.5 2.7
3.2
3.7
4.2
4.7
5.2
0 750
800
850
900
950
SUPPLY VOLTAGE (V)
RF FREQUENCY (MHz)
Figure 9. IIP3 vs. VPOS
20 19 18 10 9
Figure 12. Current vs. RF Frequency
-40C
+85C 8
CONVERSION LOSS (dB)
+25C
INPUT P1dB (dBm)
17 16 +85C 15 14 13 12
05615-010
7 +25C 6 -40C 5 4 3 2 1 0 750
05615-013
11 10 2.7
3.2
3.7
4.2
4.7
5.2
800
850
900
950
SUPPLY VOLTAGE (V)
RF FREQUENCY (MHz)
Figure 10. Input Compression vs. VPOS
12 34
Figure 13. Conversion Loss vs. RF Frequency
-40C 10 32 30
NOISE FIGURE (dB)
INPUT IP3 (dBm)
8
+25C 28 +85C 26 24
6
4
2
05615-011
0 2.7
3.0
3.5
4.0
4.5
5.0
5.5
20 750
800
850
900
950
SUPPLY VOLTAGE (V)
RF FREQUENCY (MHz)
Figure 11. Noise Figure vs. VPOS
Figure 14. IIP3 vs. RF Frequency
PrC | Page 9 of 24
05615-014
22
05615-012
2
ADL5350
820 MHz CHARACTERISTICS
22 21 20
CONVERSION LOSS (dB)
Preliminary Technical Data
9 8 +85C 7
INPUT P1dB (dBm)
-40C 19 18 17 16 +85C
+25C
6 5 -40C 4 3 2 +25C
05615-015
1 0 30
15 750
800
850
900
950
80
130
180
230
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 15. Input Compression vs. RF Frequency
Figure 18. Conversion Loss vs. IF Frequency
9 8
32
31 7
NOISE FIGURE (dB) INPUT IP3 (dBm)
6 5 4 3 2
30
29 +25C 28 -40C
27
05615-016
1 0 700
+85C 26 30 80 130 180 230
750
800
850
900
950
1000
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 16. Noise Figure vs. RF Frequency
16 14 -40C
SUPPLY CURRENT (mA)
Figure 19. IIP3 vs. IF Frequency
22 21 20
INPUT P1dB (dBm)
12 +25C 10 8 +85C 6 4
05615-017
+25C 19 18
-40C
+85C 17 16 15 30
0 30
80
130
180
230
50
100
150
200
250
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 17. Current vs. IF Frequency
Figure 20. Input Compression vs. IF Frequency
Rev. PrC | Page 10 of 24
05615-020
2
05615-019
05615-018
Preliminary Technical Data
820 MHz CHARACTERISTICS
8 7 6
NOISE FIGURE (dB)
ADL5350
30 29 28 27
5 4 3 2
INPUT IP3 (dBm)
05615-021
26 25 24 23 22 21 20 -5
05615-024
1 0 50
100
150
200
250
300
350
380
-3
-1
1
3
5
7
9
11
13
15
IF FREQUENCY (MHz)
LO LEVEL (dBm)
Figure 21. Noise Figure vs. IF Frequency
Figure 24. IIP3 vs. LO Level
70 60
SUPPLY CURRENT (mA)
22 21 20
INPUT P1dB (dBm)
05615-022
50 40 30 20 10 0 -5
19 18 17 16 15 -5
-3
-1
3
5
7
9
11
13
15
-3
-1
1
3
5
7
9
11
13
15
LO LEVEL (dBm)
LO LEVEL (dBm)
Figure 22. Current vs. LO Level
7.4 7.2 +85C
CONVERSION LOSS (dB) NOISE FIGURE (dB)
Figure 25. Input Compression vs. LO Level
12
10
VPOS = 5V
7.0 6.8 +25C 6.6 6.4 -40C
05615-023
8
6 VPOS = 3V 4
6.0 -5
-3
-1
3
5
7
9
11
13
15
0 -6
-4
-2
0
2
4
6
8
10
LO LEVEL (dBm)
LO LEVEL (dBm)
Figure 23. Conversion Loss vs. LO Level
Figure 26. Noise Figure vs. LO Level
PrC | Page 11 of 24
05615-026
6.2
2
05615-025
ADL5350
820 MHz CHARACTERISTICS
0 0 -2 -5
RF FEEDTHROUGH (dBc)
Preliminary Technical Data
-4
LO LEAKAGE (dBc)
05615-027
-10
-6 -8 -10 -12 -14 -16 -18 -20 630
05615-029
-15
-20
-25
-30 700
750
800
850
900
950
1000
680
730
780
830
880
930
RF FREQUENCY (MHz)
LO FREQUENCY (MHz)
Figure 27. RF to IF Feedthrough vs. RF Frequency
Figure 29. LO to RF Leakage vs. LO Frequency
0 -5
LO FEEDTHROUGH (dBc)
-10 -15 -20 -25 -30
05615-028
-35 -40 630
680
730
780
830
880
930
LO FREQUENCY (MHz)
Figure 28. LO to IF Feedthrough vs. LO Frequency
Rev. PrC | Page 12 of 24
Preliminary Technical Data
1950 MHz CHARACTERISTICS
ADL5350
VPOS = 3 V, RF Frequency = 1950 MHz, IF Frequency = 190 MHz, RF Level = -10 dBm, LO Level = 6 dBm, Temperature = 25C, unless otherwise noted.
25 20 18 20
SUPPLY CURRENT (mA) INPUT P1dB (dBm)
05615-030
16 14 12 10 8 6 4 2 0 -40
05615-033
15
10
5
0 -40
-20
0
20
40
60
80
-20
0
20
40
60
80
TEMPERATURE (C)
TEMPERATURE (C)
Figure 30. Current vs. Temperature
Figure 33. Input Compression vs. Temperature
10 9 8
CONVERSION LOSS (dB)
45 40 +85C 35
SUPPLY CURRENT (mA)
7 6 5 4 3 2
05615-031
30 25 +25C 20 -40C 15 10 5 0 2.7
05615-034
1 0 -40
-20
0
20
40
60
80
3.2
3.7
4.2
4.7
5.2
TEMPERATURE (C)
SUPPLY VOLTAGE (V)
Figure 31. Conversion Loss vs. Temperature
30 29 28 27
INPUT IP3 (dBm) CONVERSION LOSS (dB)
Figure 34. Current vs. VPOS
0
-2
-4
26 25 24 23 22
-6
-40C +25C
-8 +85C -10
05615-032
21 20 -40
-20
0
20
40
60
80
-12 2.7
3.2
3.7
4.2
4.7
5.2
TEMPERATURE (C)
SUPPLY VOLTAGE (V)
Figure 32. IIP3 vs. Temperature
Figure 35. Conversion Loss vs. VPOS
PrC | Page 13 of 24
05615-035
ADL5350
1950 MHz CHARACTERISTICS
35
Preliminary Technical Data
34 -40C 32
30 +85C
SUPPLY CURRENT (mA)
INPUT IP3 (dBm)
30 28 +25C 26 24 22 20 2.7 +85C
25 20 +25C 15 10 5 0 1800 -40C
05615-036
3.2
3.7
4.2
4.7
5.2
1850
1900
1950
2000
2050
SUPPLY VOLTAGE (V)
RF FREQUENCY (MHz)
Figure 36. IIP3 vs. VPOS
20 -40C 18 16 10 +25C 12
Figure 39. Current vs. RF Frequency
CONVERSION LOSS (dB)
INPUT P1dB (dBm)
14 +85C 12 10 8 6 4
05615-037
+85C 8
+25C
6 -40C 4
2
05615-040
2 0 2.7
3.2
3.7
4.2
4.7
5.2
0 1800
1850
1900
1950
2000
2050
SUPPLY VOLTAGE (V)
RF FREQUENCY (MHz)
Figure 37. Input Compression vs. VPOS
Figure 40. Conversion Loss vs. RF Frequency
14 34 12 32 10 8 6 4 2 0 2.7
NOISE FIGURE (dB)
INPUT IP3 (dBm)
30 28 +25C 26 24 +85C 22 20 1800 -40C
05615-038
3.0
3.5
4.0
4.5
5.0
5.5
1850
1900
1950
2000
2050
SUPPLY VOLTAGE (V)
RF FREQUENCY (MHz)
Figure 38. Noise Figure vs. VPOS
Figure 41. IIP3 vs. RF Frequency
Rev. PrC | Page 14 of 24
05615-041
05615-039
Preliminary Technical Data
1950 MHz CHARACTERISTICS
20 18 16 +85C 12
ADL5350
10
INPUT P1dB (dBm)
14 -40C 12 10 8 6 4
05615-042
CONVERSION LOSS (dB)
+85C 8
+25C
6 -40C 4 +25C
2
05615-045
2 0 1800
1850
1900
1950
2000
2050
0 50
100
150
200
250
300
350
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 42. Input Compression vs. RF Frequency
Figure 45. Conversion Loss vs. IF Frequency
14 34 12 32 10 8 6 4 2 0 2.7
NOISE FIGURE (dB)
INPUT IP3 (dBm)
30 28 +85C 26 24 22 -40C 20 50 100 150 200 250 300 350 +25C
3.0
3.5
4.0
4.5
5.0
5.5
05615-043
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 43. Noise Figure vs. RF Frequency
Figure 46. IIP3 vs. IF Frequency
35 30
20 18 +85C +25C 16
SUPPLY CURRENT (mA)
25
INPUT P1dB (dBm)
14 +85C 12 10 8 6 4 -40C
20 -40C 15 10 5 0 50
+25C
05615-044
2 0 50
100
150
200
250
300
350
100
150
200
250
300
350
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 44. Current vs. IF Frequency
Figure 47. Input Compression vs. IF Frequency
PrC | Page 15 of 24
05615-047
05615-046
ADL5350
1950 MHz CHARACTERISTICS
20 18 16 28 26 24
Preliminary Technical Data
NOISE FIGURE (dB)
14 12 10 8 6 4
05615-048
INPUT IP3 (dBm)
22 20 18 16 14 12 10 -5
05615-051
2 0 50
100
150
200
250
300
350
380
-3
-1
1
3
5
7
9
11
13
15
IF FREQUENCY (MHz)
LO LEVEL (dBm)
Figure 48. Noise Figure vs. IF Frequency
Figure 51. IIP3 vs. LO Level
70 60
20 18 16
SUPPLY CURRENT (mA)
50
INPUT P1dB (dBm)
05615-049
14 12 10 8 6 4 2 0 -5
05615-052
40 30 20 10 0 -5
-3
-1
1
3
5
7
9
11
13
15
-3
-1
1
3
5
7
9
11
13
15
LO LEVEL (dBm)
LO LEVEL (dBm)
Figure 49. Current vs. LO Level
10 9 8 18 16 14
Figure 52. Input Compression vs. LO Level
CONVERSION LOSS (dB)
NOISE FIGURE (dB)
7 6 5 4 3 2
05615-050
VPOS = 5V 12 10 8 6 4 2 0 -6
05615-053
VPOS = 3V
1 0 -5
0
5 LO LEVEL (dBm)
10
15
-4
-2
0
2
4
6
8
10
LO LEVEL (dBm)
Figure 50. Conversion Loss vs. LO Level
Figure 53. Noise Figure vs. LO Level
Rev. PrC | Page 16 of 24
Preliminary Technical Data
1950 MHz CHARACTERISTICS
0 0 -2 -5
ADL5350
RF FEEDTHROUGH (dBc)
-10
LO LEAKAGE (dBc)
05615-054
-4 -6 -8 -10 -12 -14 1560
-15
-20
05615-056
-25 1750
1800
1850
1900
1950
2000
2050
2100
2150
1610
1660
1710
1760
1810
1860
1910
1960
RF FREQUENCY (MHz)
LO FREQUENCY (MHz)
Figure 54. RF to IF Feedthrough vs. RF Frequency
Figure 56. LO to RF Leakage vs. LO Frequency
0 -2 -4
LO FEEDTHROUGH (dBc)
-6 -8 -10 -12 -14 -16 -18 1560
05615-055
1610
1660
1710
1760
1810
1860
1910
1960
LO FREQUENCY (MHz)
Figure 55. LO to IF Feedthrough vs. LO Frequency
PrC | Page 17 of 24
ADL5350 FUNCTIONAL DESCRIPTION
CIRCUIT DESCRIPTION
The ADL5350 is a GaAs MESFET, single-ended passive mixer with an integrated LO buffer amplifier. The device relies on the varying drain to source channel conductance of a FET junction to modulate an RF signal. A simplified schematic is shown in Figure 57.
VS RF INPUT OR OUTPUT
Preliminary Technical Data
IMPLEMENTATION PROCEDURE
The ADL5350 is a simple single-ended mixer that relies on offchip circuitry to achieve effective RF dynamic performance. The following steps should be followed to achieve optimum performance (see Figure 58 for component designations):
VS IF C6 L2 C2 C4
L4 7 GC 6 VPOS 5 GND1
VPOS
GC
RF IF IF OUTPUT OR INPUT
8 RF/IF
LO INPUT
LO
ADL5350
RF/IF 1 GND2 2 LOIN 3 L3 L1 C1
05615-058
GND1 4
05615-057
GND
GND
RF
Figure 57. Simplified Schematic
C3 LO
The LO signal is applied to the gate contact of a FET-based buffer amplifier. The buffer amplifier provides sufficient gain of the LO signal to drive the resistive switch. Additionally, feedback circuitry provides the necessary bias to the FET buffer amplifier and RF/IF ports to achieve optimum modulation efficiency for common cellular frequencies. The GC node is the "gate-contact" of the RF/IF port resistive switch. The GC node enables external control of the bias level of the switching FET, allowing the user to override the internal bias generation circuitry, and allow further optimization of the mixer's dynamic performance at frequencies outside of the 800 MHz to 2000 MHz band. The mixing of RF and LO signals is achieved by switching the channel conductance from the RF/IF port to ground at the rate of the LO. The RF signal is passed through an external bandpass network to help reject image bands and reduce the broadband noise presented to the mixer. The band-limited RF signal is presented to the time-varying load of the RF/IF port, which causes the envelope of the RF signal to be amplitude modulated at the rate of the LO. A filter network applied to the IF port is necessary to reject the RF signal and pass the wanted mixing product. In a down-conversion application, the IF filter network is designed to pass the difference frequency and present an open circuit to the incident RF frequency. Similarly, for an up-conversion application, the filter is designed to pass the sum frequency and reject the incident RF. As a result, the frequency response of the mixer is determined by the response characteristics of the external RF/IF filter networks.
Figure 58. Reference Schematic
1.
Tune LO buffer supply inductor for lowest supply current.
To start this procedure, it is necessary to provide an initial guess. Table 8 can be used as a starting point. It is not necessary to terminate or populate the RF and IF port networks to complete this first step. The RFIF pins can be left open while tuning the LO buffer networks. Table 8. Recommended LO Bias Inductor
Desired LO Frequency 380 MHz 750 MHz 1000 MHz 1750 MHz 2000 MHz
1
Recommended LO Bias Inductor (L4)1 68 nH 24 nH 18 nH 3.8 nH 2.1 nH
The bias inductor should have a self-resonant frequency greater than the intended frequency of operation.
To test the supply current consumption, power up the device and apply the desired LO signal. Next, attempt to increase and decrease the LO frequency. If the current consumption increases as the LO frequency is decreased, then increase the value of L4. If the current consumption decreases as the LO frequency also decreases, then decrease the value of L4. After determining the optimum inductor value, the current consumption should be minimized at the desired LO frequency.
Rev. PrC | Page 18 of 24
Preliminary Technical Data
2. Tune the LO port input network for optimum return loss. 3. Design the RF and IF filter networks. Typically, a bandpass network is used to pass the LO signal to the LOIN pin. It is desirable to block high frequency harmonics of the LO from the mixer core. LO harmonics cause higher RF frequency images to be down converted to the desired IF frequency, and result in a sensitivity degradation. If the intended LO source has poor harmonic distortion and spectral purity, it may be necessary to employ a higher order bandpass filter network. Figure 58 illustrates a simple L-C bandpass filter used to pass the fundamental frequency of the LO source. Capacitor C3 is a simple DC block, while the series-inductor (L3), along with the gate-to-source capacitance of the buffer amplifier, form a low-pass network. The native gate input of the LO buffer (FET) presents a rather high input impedance alone. The gate bias is generated internally using feedback that can result in a positive return loss at the intended LO frequency. If a better than -10 dB return loss is desired, it may be necessary to add shunt resistor to ground before the coupling capacitor (C3) to present a lower loading impedance to the LO source .
ADL5350
Figure 58 depicts simple LC tank filter networks for the IF and RF port interfaces. The RF port LC network is designed to pass the RF input signal. The series LC tank has a resonant frequency at 1/(2LC). At resonance, the series reactances cancel, which presents a series short to the RF signal. A parallel LC tank is used on the IF port to reject the RF and LO signals. At resonance, the parallel LC tank presents an open circuit. It is necessary to accommodate for the board parasitics, finite Q, and self-resonant frequencies of the LC components when designing the RF, IF, and LO filter networks. Table 9 provides suggested values for initial prototyping.
Table 9. Suggested RF, IF, and LO Filter Networks for Low-Side LO Injection
RF Frequency 450 MHz 850 MHz 1950 MHz 2400 MHz
1
L11 8.3 nH 6.8 nH 1.7 nH 0.67 nH
C1 10 pF 4.7 pF 1.5 pF 1 pF
L2 10 nH 4.7 nH 1.7 nH 1.5 nH
C2 10 pF 5.6 pF 1.2 pF 0.7pF
L3 10 nH 8.2 nH 3.5 nH 3.0 nH
C3 100 pF 100 pF 100 pF 100 pF
The inductor should have a self-resonant frequency greater than the intended frequency of operation. L1 should be a high Q inductor for optimum NF performance.
PrC | Page 19 of 24
ADL5350 APPLICATIONS
LOW FREQUENCY APPLICATIONS
Using an external capacitor from the GC pin to VPOS makes it possible to operate the ADL5350 at frequencies below 100 MHz. This capacitor is required because the internal capacitor between the LO buffer and the gate of the device is only 4 pF. This capacitance combined with the gate resistance causes a high-pass filter corner of 80 MHz.
VS RF INPUT OR OUTPUT
Preliminary Technical Data
The circuit in Figure 60 is designed for a RF of 70 MHz and an IF of 10.7 MHz. The LO is at 59.3 MHz (Low Side LO). The series resonant circuit is designed for 70 MHz and the parallel resonant circuit is designed for 65 MHz.
3V 4.7F
+
10nF IF 10nF 100nH 56pF 47pF 6 VPOS 270nH
VPOS
GC
RF IF IF OUTPUT OR INPUT ALL INDUCTORS ARE 0603CS SERIES FROM COILCRAFT
8 RF/IF
7 GC
5 GND1
LO INPUT
LO
ADL5350
RF/IF 1 GND2 2 LOIN 3 GND1 4
05615-060
GND
GND
RF
100nH 47pF LO 10nF
05615-061
Figure 59. Block Diagram
This high-pass filter corner decreases the LO energy that is reaching the mixer core. Using a 47 pF capacitor between VPOS and GC reduces this corner frequency to 7 MHz.
Figure 60. 70 MHz to 10.7 MHz Down-Conversion Schematic
Rev. PrC | Page 20 of 24
Preliminary Technical Data
70 MHz RECEIVE PERFORMANCE
VS = 3 V, TA = 25C, LO power = 4 dBm, re: 50 , unless otherwise noted. Table 10.
Parameter RF Frequency LO Frequency IF Frequency Conversion Loss SSB Noise Figure Input Third-Order Intercept Supply Voltage Supply Current 60 59.3 10.7 6.7 6.7 27.3 3 18 Unit MHz MHz MHz dB dB dBm V mA
ADL5350
Table 11 shows the spur performance for RF = 70 MHz and LO = 59.3 MHz; RFin = -5 dBm, Loin=4 dBm; all values in dBc referenced to RFin. Note that higher order spurious components falling in-band do become an issue as the bandwidth of the desired signal increases. Therefore, while operation at IF frequencies as low as 10 MHz is possible, the bandwidth of this signal needs to be taken into consideration.
. Table 11. N x fRF - M x fLO-Mixer Spurious Products
M 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 N 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 -6.8 -15.3 -51.5 -71.4 -82.9 -76.2 -88.6 -90.6 -81.8 -90.2 -78.2 -77.6 -89.4 -80.0 -86.3 -84.4 1.0 -30.5 -6.8 -66.0 -78.8 -78.6 -82.9 -74.6 -76.7 -80.4 -78.3 -82.1 -85.8 -90.8 -82.5 -85.6 -81.9 2.0 -23.3 -18.1 -57.8 -73.1 -81.0 -78.6 -79.1 -79.9 -84.6 -80.2 -80.3 -78.4 -80.8 -79.6 -89.2 -81.1 3.0 -30.5 -37.3 -57.4 -75.1 -84.2 -75.4 -80.2 -80.6 -84.9 -71.9 -73.5 -85.1 -71.7 -82.0 -85.6 -87.9 4.0 -28.9 -19.8 -63.1 -80.6 -79.7 -78.7 -77.1 -81.0 -79.5 -73.9 -86.6 -86.6 -73.4 -78.9 -82.7 -77.7 5.0 -34.9 -22.6 -57.8 -81.8 -77.5 -84.9 -76.1 -83.4 -83.1 -85.8 -86.1 -80.1 -75.5 -78.5 -74.4 -83.3 6.0 -41.1 -41.5 -55.6 -78.3 -76.6 -77.6 -85.8 -73.1 -80.1 -82.2 -81.0 -79.4 -82.2 -73.4 -88.1 -78.4 7.0 -45.7 -24.2 -59.2 -78.2 -79.0 -79.2 -76.2 -76.8 -78.6 -86.6 -86.0 -78.8 -76.8 -80.4 -77.6 -81.9 8.0 -37.8 -26.9 -56.3 -72.3 -74.9 -84.5 -81.2 -77.9 -89.9 -80.2 -78.2 -69.3 -72.1 -84.9 -74.4 -90.0 9.0 -39.7 -42.4 -55.7 -82.3 -75.0 -85.0 -82.9 -84.6 -78.7 -78.7 -86.2 -82.8 -78.0 -81.5 -79.0 -73.3 10.0 -42.3 -27.7 -61.3 -77.7 -75.8 -75.9 -89.7 -80.0 -75.3 -79.1 -87.1 -81.6 -76.3 -79.4 -85.4 -84.6 11.0 -37.5 -30.1 -57.1 -82.4 -76.3 -81.3 -75.4 -78.4 -77.0 -71.2 -83.7 -94.2 -84.9 -79.1 -89.1 -77.8 12.0 -48.8 -43.4 -55.7 -76.3 -89.2 -74.9 -82.9 -73.2 -81.6 -78.8 -79.8 -81.7 -85.6 -76.1 -88.4 -81.7 13.0 -40.1 -30.2 -58.3 -73.3 -76.7 -98.6 -85.4 -75.2 -86.3 -76.0 -75.0 -80.5 -78.7 -82.8 -77.2 -81.2 14.0 -39.1 -32.9 -56.8 -74.3 -87.9 -73.6 -78.1 -79.3 -85.0 -84.5 -83.8 -84.1 -71.8 -77.8 -81.1 -93.2 15.0 -37.4 -44.3 -57.6 -79.2 -76.1 -90.4 -75.9 -90.9 -77.1 -81.8 -82.4 -77.2 -85.1 -71.7 -80.0 -71.4
PrC | Page 21 of 24
ADL5350
HIGH FREQUENCY APPLICATIONS
The ADL5350 can be used at extended frequencies with some careful attention to board and component parasitics. Figure 61 is an example of a 2.3 GHz to 2.5 GHz down-conversion using a low-side LO. The performance of this circuit is depicted in Figure 62. Note that the inductor and capacitor values are very small, especially for the RF and IF ports. Above 2.5 GHz, it is necessary to consider alternate solutions to avoid unreasonably small inductor and capacitor values.
3V 4.7F
IF
Preliminary Technical Data
Figure 63 depicts a cross-over filter network approach to provide isolation between the RF and IF ports for a downconverting application. The cross-over network essentially provides a high-pass filter to allow the RF signal to pass to the RF/IF node (Pin 1 and Pin 8), while presenting a low-pass filter, (which is actually band-pass when considering the DC blocking capacitor, CAC). This allows the difference component (fRF - fLO) to be passed to the desired IF load.
3V 4.7F C2 1.8pF CAC 100pF
+
+
100pF 1nF 1.5nH 0.7pF 2.1nH
100pF
IF
L2 1.5nH 8 7 GC 6
3.8nH 5 GND1
8 ALL INDUCTORS ARE 0302CS SERIES FROM COILCRAFT RF/IF
7 GC
6 VPOS
5 GND1
ADL5350
RF/IF 1 GND2 2 LOIN 3 GND1 4
ALL INDUCTORS ARE 0302CS SERIES FROM COILCRAFT
RF/IF
VPOS
ADL5350
RF/IF 1 GND2 2 LOIN 3 GND1 4
RF
0.67nH 3.0nH 1pF 100pF LO
05615-062
RF L1 3.5nH C1 1.2pF LO
3.5nH
05615-064
100pF
Figure 63. 3.3 GHz to 3.8 GHz Down-Conversion Schematic
Figure 61. 2.3 GHz to 2.5 GHz Down-Conversion Schematic
30 25 20
IIP3, IP1dB (dBm)
12 9 6 IP1dB 3 0 -3 GAIN -6 -9 -12 2500
IIP3
15 10 5 0 -5 -10 2200
05615-063
When designing the RF and IF port networks, it is important to remember that the networks share a common node (the RF/IF pins). In addition, the opposing network presents some loading impedance to the target network being designed. Classic audio crossover filter design techniques can be applied to help derive component values. However, some caution must be applied when selecting component values. At high RF frequencies, the board parasitics may significantly influence the final optimum inductor and capacitor component selections. Some empirical testing may be necessary to optimize the RF and IF port filter networks. The performance of the circuit depicted in Figure 63 is provided in Figure 64.
30 28 26 -2 -3 -4 -5 -6 GAIN 20 18 IP1dB
05615-065
2250
2300
2350
2400
2450
RF FREQUENCY (MHz)
CONVERSION GAIN (dB)
IIP3
The typical networks used for cellular applications below 2.5 GHz utilize band-select and band-reject networks on the RF and IF ports. At higher RF frequencies, these networks are not easily realized using lumped element components (discrete Ls and Cs). As a result, it is necessary to consider alternate filter network topologies to allow more reasonable values of inductors and capacitors.
24 22
-7 -8 -9
16
-10 14 3300 3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 RF FREQUENCY (MHz)
Figure 64. Measured Performance for Circuit in Figure 63
Rev. PrC | Page 22 of 24
CONVERSION GAIN (dB)
IP1dB, IIP3 (dBm)
Figure 62. Measured Performance for Circuit in Figure 61 Using Low-Side LO Injection and 374 MHz IF
Preliminary Technical Data EVALUATION BOARD
ADL5350
An evaluation board is available for the ADL5350. The evaluation board has two halves: a low band designated as Board A, and a high band board designated as Board B. The schematic for the evaluation board is presented in Figure 65.
VPOS-A C5-A VPOS-B C5-B IF-B C6-B L2-B C2-B C4-B
+
IF-A
C6-A L2-A C2-A
C4-A
L4-A 6 VPOS U1-A 5 GND1
8 RF/IF
7 GC
8 RF/IF
7 GC U1-B
6 VPOS
+
L4-B 5 GND1
ADL5350
RF/IF 1 RF-A L1-A C1-A C3-A LO-A GND2 2 LOIN 3 GND1 4 RF-B L1-B C1-B RF/IF 1
ADL5350
GND2 2 LOIN 3 GND1 4
L3-A
L3-B C3-B LO-B
05615-059
Figure 65. Evaluation Board
Table 12. Evaluation Board Configuration Options
Component C4-A, C4-B, C5-A, C5-B L1-A, L1-B, C1-A, C1-B L2-A, L2-B, C2-A, C2-B, C6-A, C6-B L3-A, L3-B, C3-A, C3-B L4-A, L4-B Function Supply Decoupling. C4-A and C4-B provide local bypassing of the supply. C5-A and C5-B are used to filter the ripple of a noisy supply line. These are not always necessary. RF Input Network. Designed to provide series resonance at the intended RF frequency. IF Output Network. Designed to provide parallel resonance at the geometric mean of the RF and LO frequencies. LO Input Network. Designed to block DC and optimize LO voltage swing at LOIN. LO Buffer Amp Choke. Provides bias and ac loading impedance to LO buffer amp. Default Conditions C4-A = C4-B = 100 pF C5-A = C5-B = 4.7 F L1-A = 6.8 nH (0603CS from Coilcraft) L1-B = 1.7 nH (0302CS from Coilcraft) C1-A = 4.7 pF, C1-B = 1.5 pF L2-A = 4.7 nH (0603CS from Coilcraft) L2-B = 1.7 nH (0302CS from Coilcraft) C2-A = 5.6 pF, C2-B = 1.2 pF C6-A = C6-B = 1 nF L3-A = 8.2 nH (0603CS from Coilcraft) L3-B = 3.5 nH (0302CS from Coilcraft) C3-A = C3-B = 100 pF L4-A = 24 nH (0603CS from Coilcraft) L4-B = 3.8 nH (0302CS from Coilcraft)
Rev. PrC | Page 23 of 24
ADL5350 OUTLINE DIMENSIONS
3.25 3.00 2.75 2.25 2.00 1.75 0.60 0.45 0.30 1.89 1.74 1.59
Preliminary Technical Data
0.55 0.40 0.30
1.95 1.75 1.55
5 BOTTOM VIEW 8 * EXPOSED PAD 4 1
TOP VIEW
0.15 0.10 0.05 0.25 0.20 0.15
PIN 1 INDICATOR
2.95 2.75 2.55 12 MAX 0.80 MAX 0.65 TYP
0.50 BSC
1.00 0.85 0.80
0.05 MAX 0.02 NOM 0.30 0.23 0.18 0.20 REF
SEATING PLANE
Figure 66. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 2 mm x 3 mm Body, Very Thin, Dual Lead (CP-8-1) Dimensions shown in millimeters
ORDERING GUIDE
Models ADL5350ACPZ-R21 ADL5350ACPZ-R71 ADL5350ACPZ-WP1 ADL5350-EVAL
1
Temperature Range -40C to +85C -40C to +85C -40C to +85C
Package Description 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] Evaluation Board
Package Option CP-8-1 CP-8-1 CP-8-1
Branding Q7 Q7 Q7
Ordering Quantity 250, Reel 3000, Reel 50, Waffle Pack 1
Z = Pb-free part.
(c) 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR05615-0-12/05(PrC)
Rev. PrC | Page 24 of 24


▲Up To Search▲   

 
Price & Availability of ADL5350

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X